Dual-Space Analysis of the Sparse Linear Model
نویسندگان
چکیده
Sparse linear (or generalized linear) models combine a standard likelihood function with a sparse prior on the unknown coefficients. These priors can conveniently be expressed as a maximization over zero-mean Gaussians with different variance hyperparameters. Standard MAP estimation (Type I) involves maximizing over both the hyperparameters and coefficients, while an empirical Bayesian alternative (Type II) first marginalizes the coefficients and then maximizes over the hyperparameters, leading to a tractable posterior approximation. The underlying cost functions can be related via a dual-space framework from [22], which allows both the Type I or Type II objectives to be expressed in either coefficient or hyperparmeter space. This perspective is useful because some analyses or extensions are more conducive to development in one space or the other. Herein we consider the estimation of a trade-off parameter balancing sparsity and data fit. As this parameter is effectively a variance, natural estimators exist by assessing the problem in hyperparameter (variance) space, transitioning natural ideas from Type II to solve what is much less intuitive for Type I. In contrast, for analyses of update rules and sparsity properties of local and global solutions, as well as extensions to more general likelihood models, we can leverage coefficient-space techniques developed for Type I and apply them to Type II. For example, this allows us to prove that Type II-inspired techniques can be successful recovering sparse coefficients when unfavorable restricted isometry properties (RIP) lead to failure of popular l1 reconstructions. It also facilitates the analysis of Type II when non-Gaussian likelihood models lead to intractable integrations.
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کامل3D gravity data-space inversion with sparseness and bound constraints
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes ...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملTheoretical Analysis of Polarization Rotation angle in Dual Reflector Antenna
Because of special structure, a dual reflector antenna has beam rotation capability in azimuth and elevation directions. In this structure, the antenna beam can be placed in any point in the space by mechanical movement of twist reflector which it is the most important ability of the antenna. Due to the antenna structure, if the polarization of incident wave is linear, it is expected that the p...
متن کاملWave Propagation at the Boundary Surface of Inviscid Fluid Half-Space and Thermoelastic Diffusion Solid Half-Space with Dual-Phase-Lag Models
The present investigation deals with the reflection and transmission phenomenon due to incident plane longitudinal wave at a plane interface between inviscid fluid half-space and a thermoelastic diffusion solid half-space with dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. The theory of thermoelasticity with dual-phase-lag heat transfer developed by Roychoudhar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012